Institute for Software Technology " Grazm

Knowledge Extraction from C-Code

Willibald Krenn and Franz Wotawa

Institute for Software Technology,
Graz University of Technology

. Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

Ty,

Institute for Software Technology

Outline

1. Motivation: “Why do we want to extract knowledge?
“What type of knowledge do we search for?”

2. Basic Idea and Conversion Process: “How do we extract
knowledge?”

3. Discussion of Limitations, Outlook

4. QIA

. Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

TU

Institute for Software Technology Grazm

Motivation — Why extract knowledge?

e Conversion of existing control programs to
knowledge-base based ones
— Make knowledge explicit and easier to maintain
— Preserve large parts of the original control program

— Enable the system to reason about itself: Truly autonomous
systems.

e Debugging Aid

— Quickly gain overview

. Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

TU

Institute for Software Technology Grazm

Motivation — What type of knowledge?

« Conditions under which a certain functions get called:
cond 1&cond 2&.... &cond_n -2 func

« IOW: We extract rules that tell the system when some low-level
function (“action”) can be called.

 The extracted rules should preserve the original program
behavior as much as possible.

 The rule set should not be a 1:1 representation of the C-
program.

. Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

4

Ty,

Institute for Software Technology

Outline

1. Motivation: “Why do we want to extract knowledge?
“What type of knowledge do we search for?”

2. Basic Idea and Conversion Process: “How do we extract
knowledge?”

3. Discussion of Limitations, Outlook

4. QIA

. Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

Institute for Software Technology

TU

Grazm

Conversion Process — Control Program

1 void main (void)
{
3 / . . ./
while (1) {
5 runM2mM() ;
¥
7}
/ . . ./
9 void runM2MmM(void)
{
11 if (gsmev ring () ==1) {
makePassiveCall ();

13 setM2MReportTimer (REPORT_TIMEOUT) ;

Extract knowledge about
makePassiveCall and
makeActiveCall

}
15 if (getM2MReportTimer () == 0) {

setM2MReportTimer (REPORT_TIMEOUT) ;

17 if (getGPSState () == ’S”) {
char old , new;
19 old = getSignalQuality () ;
gsm_act _readdb () ;
21 m2m_wait (3);
new = getSignalQuality () ;
23 it (new == old)
return;
25 }
makeActiveCall ();
27 %}
}

. Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

TU

Institute for Software Technology Grazm

Conversion Process (2)

« Easy in the case of makePassiveCall:
»Cond1l -2 passiveCall()

A

setMZMReportTimer (REPORT_TIMEOUT) ;

 More difficult in case of makeActiveCall:
Local Variables in condition are not
allowed because their value is dependent
on execution of some code.

false

« Solution: Encapsulate calculation and

— . l comparison inside a new function
e (“dOCheCkn) .
EXIT

. Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

2

TU

Institute for Software Technology Grazm

Conversion Process (3)

int doCheck () {
char old , new ;
old = getSignalQuality () ;
gsm _act_readdb () ;
m2m_wait (3) ;
new = getSignalQuality () ;
if (new == old)
return 1 ;
else
return O ;

» Using this function, lines 17 to 25 can be re-written as follows:

if (getGPSState () == ’S”)
if (doCheck () ==1)
return ;
makeActiveCall () ;

« Finally following rule can be extracted:
cond2 & ('cond3 | 'cond4) - activeCall

cond2 ... getM2MReportTimer() ==
cond3 ... getGPSState() == 'S’
cond4 ... doCheck() ==

. Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

TU

Institute for Software Technology Grazm

Conversion Process (4)

* In the case of makePassiveCall:
>*Cond1l -2 passiveCall()

A

* In case of makeActiveCall:
— Cond2 & (!C})ndS | ICond4) -2 activeCall

A

falze

true

(EXIT

. Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

9

Institute for Software Technology Grazm

Conversion Process (5)

o After generating rules, the system minimizes them

e A search for common condition sequences also can
be carried out
— Re-introduce the notion of a state

 More detailed discussion of the algorithm contained
In the paper.

. Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

10

Institute for Software Technology

TU

Grazm

makePassiveCall {);

setMZMReportTimer {REPORT TIMEOUT]) ;

false

£ (getMZMReportTimer () ==0)

setMZMReportTimer (REPORT_TIMEOUT) ;

false

makeactiveCall (}:

mEm_wait {3}y

new getSignalQuality():

false

true
EXIT

Algorithm

Algorithm computeRules
Input: A program IT and a set of procedures or functions of interest F'.
Output: A set of rules.

I. Let IT" be the program where all local variables used in conditional expression of II
have been eliminated by using behavior preserving transformations.

Construct a CFG for IT'.

Let R be the empty set. In R we are storing the extracted rules.

Forall f € F do:

(a) For all vertices v where f is called in the corresponding source code do:
i. Extract the path(s) (ENTRY, vy, ..., v, v) from ENTRY to the vertex v.
ii. Apply the transformation function [to the path(s) which is defined as fol-

oo

lows:
€ itz =vorx= FENTRY orzisnota conditional
- if ¥ is the immediate successor of « in the path and
l(z) = the label of the arc (x,y) is true
~if y is the immediate successor of z in the path and
™ the label of the arc (z,y) is false
Let (I1, ..., ;) be the path after applying the function /.

iii. Generate rule(s) 1 A ... Al — f and add it to the set of rules R.

5. Minimize the set of rules R and return them as result.

. Willibald Krenn, Franz Wotawa

Knowledge Extraction from C-Code

11

Ty,

Institute for Software Technology

Outline

1. Motivation: “Why do we want to extract knowledge?
“What type of knowledge do we search for?”

2. Basic Idea and Conversion Process: “How do we extract
knowledge?”

3. Discussion of Limitations, Outlook

4. QIA

. Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

12

TU

Institute for Software Technology Grazm

Limitations

 The algorithm may fail in several ways
— Extract a wrong rule set due to e.g., hidden bugs in C-code
— Extract rules that do not match the behavior of the C-code

« Other challenges
— Interrupt routines (if candidates for knowledge extraction)
— Worst case exponential
— Lost states

. Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

13

TU

Institute for Software Technology Grazm

Limitations - Example

o “c”Is low-level (won't be looked
at)
° HC” does Hi — j;H
if (1 !'= j) |
2 if(a)
4 it (imi) « Extracted rules:
. return; _ i!:j&aéc
6 if (la) i .
c: — | |:J &la—>c
5 . .
o Simplifies to:
—il=j>c
This is NOT the intended behavior!
. Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

14

TU

Institute for Software Technology Grazm

Outlook

« Working on a implementation in order to evaluate the
usefulness.

« Compare the results with those of other approaches

. Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

15

TU

Institute for Software Technology Grazm

Thank you for your attention

. Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

16

