
Institute for Software Technology

1

Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

Knowledge Extraction from C-Code

Willibald Krenn and Franz Wotawa

Institute for Software Technology,
Graz University of Technology

Institute for Software Technology

2

Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

Outline

1. Motivation: “Why do we want to extract knowledge?
“What type of knowledge do we search for?”

2. Basic Idea and Conversion Process: “How do we extract
knowledge?”

3. Discussion of Limitations, Outlook

4. Q/A

Institute for Software Technology

3

Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

Motivation – Why extract knowledge?

• Conversion of existing control programs to
knowledge-base based ones
– Make knowledge explicit and easier to maintain
– Preserve large parts of the original control program
– Enable the system to reason about itself: Truly autonomous

systems.

• Debugging Aid
– Quickly gain overview

Institute for Software Technology

4

Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

Motivation – What type of knowledge?

• Conditions under which a certain functions get called:
cond_1 & cond_2 & …. & cond_n func

• IOW: We extract rules that tell the system when some low-level
function (“action”) can be called.

• The extracted rules should preserve the original program
behavior as much as possible.

• The rule set should not be a 1:1 representation of the C-
program.

Institute for Software Technology

5

Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

Outline

1. Motivation: “Why do we want to extract knowledge?
“What type of knowledge do we search for?”

2. Basic Idea and Conversion Process: “How do we extract
knowledge?”

3. Discussion of Limitations, Outlook

4. Q/A

Institute for Software Technology

6

Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

Conversion Process – Control Program
1 void main (void)

{
3 / . . . /

while (1) {
5 runM2M() ;

}
7 }

/ . . . /
9 void runM2M(void)

{
11 if (gsm_ev_ring () == 1) {

makePassiveCall ();
13 setM2MReportTimer (REPORT_TIMEOUT) ;

}
15 if (getM2MReportTimer () == 0) {

setM2MReportTimer (REPORT_TIMEOUT) ;
17 if (getGPSState () == ’S’) {

char old , new;
19 old = getSignalQuality () ;

gsm_act_readdb () ;
21 m2m_wait (3);

new = getSignalQuality () ;
23 if (new == old)

return;
25 }

makeActiveCall ();
27 }

}

Extract knowledge about
makePassiveCall and

makeActiveCall

Institute for Software Technology

7

Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

Conversion Process (2)
• Easy in the case of makePassiveCall:

Cond1 passiveCall()

• More difficult in case of makeActiveCall:
Local Variables in condition are not
allowed because their value is dependent
on execution of some code.

• Solution: Encapsulate calculation and
comparison inside a new function
(“doCheck”).

Institute for Software Technology

8

Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

Conversion Process (3)
int doCheck () {

char old , new ;
old = getSignalQuality () ;
gsm_act_readdb () ;
m2m_wait (3) ;
new = getSignalQuality () ;
if (new == old)

return 1 ;
else

return 0 ;
}

• Using this function, lines 17 to 25 can be re-written as follows:

if (getGPSState () == ’S’)
if (doCheck () == 1)

return ;
makeActiveCall () ;

• Finally following rule can be extracted:
cond2 & (!cond3 | !cond4) activeCall

cond2 … getM2MReportTimer() == 0
cond3 … getGPSState() == ‘S’
cond4 … doCheck() == 1

Institute for Software Technology

9

Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

Conversion Process (4)
• In the case of makePassiveCall:

Cond1 passiveCall()

• In case of makeActiveCall:
Cond2 & (!Cond3 | !Cond4) activeCall

Institute for Software Technology

10

Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

Conversion Process (5)

• After generating rules, the system minimizes them

• A search for common condition sequences also can
be carried out
– Re-introduce the notion of a state

• More detailed discussion of the algorithm contained
in the paper.

Institute for Software Technology

11

Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

Algorithm

Institute for Software Technology

12

Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

Outline

1. Motivation: “Why do we want to extract knowledge?
“What type of knowledge do we search for?”

2. Basic Idea and Conversion Process: “How do we extract
knowledge?”

3. Discussion of Limitations, Outlook

4. Q/A

Institute for Software Technology

13

Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

Limitations

• The algorithm may fail in several ways
– Extract a wrong rule set due to e.g., hidden bugs in C-code
– Extract rules that do not match the behavior of the C-code

• Other challenges
– Interrupt routines (if candidates for knowledge extraction)
– Worst case exponential
– Lost states

Institute for Software Technology

14

Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

Limitations - Example

• “c” is low-level (won’t be looked
at)

• “c” does “i = j;”

• Extracted rules:
– i != j & a c
– i != j & !a c

• Simplifies to:
– i != j c;

This is NOT the intended behavior!

Institute for Software Technology

15

Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

Outlook

• Working on a implementation in order to evaluate the
usefulness.

• Compare the results with those of other approaches

Institute for Software Technology

16

Willibald Krenn, Franz Wotawa Knowledge Extraction from C-Code

Thank you for your attention

